P P SAVANI UNIVERSITY

Fifth Semester of B. Tech. Examination November- 2022

SECH3041 Chemical Engineering Thermodynamics - II

02.12.2022, Friday

Instructions:

Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

 Section Make s 	estion paper comprises of two sections. I and II must be attempted in separate answer sheets. Suitable assumptions and draw neat figures wherever required. Socientific calculator is allowed.			
	SECTION - I			
Q-1	MCQ/Short Question/Fill in the Blanks	[05]	CO	BTL
(i)	For ideal gases, the fugacity is the same as the pressure (TRUE/FALSE)		2	1
(ii)	Define the fugacity coefficient.	- /-	2	1
(iii)	Define partial molar property.		4	1
(iv)	The value of change in internal energy for isothermal process =		5	2
	1 (b) 0 (c) W (d) none of above.			
(v)	Partial molar properties are properties. (Extensive/Intensive).		4	1
Q-2(a)	What is the activity? Determine the activity of solid magnesium (MW 24.32) at	[05]	4	3
	300 K and 10 bar if the reference state is 300 k and 1 bar. The density of			
	magnesium at 300 K is $1.745*10^3$ kg/m 3 and is assumed constant over this			
	pressure range.			
	$\ln a = \frac{V}{RT} \left(P - P^0 \right)$			
	Equation:			
Q-2(b)	Define adiabatic process. Derive the PV relations for the adiabatic process.	[05]	5	1
Q 2 (b)	OR			
Q-2(a)	Discuss PVT behavior of pure fluids.	[05]	1	2
Q-2(b)	Define fugacity. The density of gaseous ammonia at 473 K and 50 bar is 24.3	[05]	2	2
	kg/m³. Estimate its fugacity.			
	VP^2			
	$f = \frac{VP^2}{RT}$			
	Equation: Derive the general forms of the Gibbs-Duhem equation.	[05]	3	4
Q-3(a)				
Q-3(b)	State the various methods to estimate the fugacity of pure gases. Discuss anyone	[05]	2	4
	in detail.			
	OR OR			
Q-3(a)	Discuss in the brief tangent-intercept method.	[05]	3	1
Q-3(b)	Will it be possible to prepare 0.1 m ³ of the alcohol-water solution by mixing 0.04	[05]	4	5
	m ³ alcohol with 0.06 m ³ pure water? If not possible, what volume should have			
	been mixed in order to prepare a mixture of the same strength and of the			
	required volume?			
	The density of ethanol and water are 789 and 997 kg/m ³ respectively. The partial	1 - 3		
	molar volume of ethanol and water at the desired composition are: Ethanol =			
0.4	53.6*10-6 m³/mol. Water = 18*10-6 m³/mol	[05]		
Q-4	Attempt any one State Redlich-Kwong equation of state.	is heart	5	2
(i)	State Reducti 184018 equation of same.		Dag	o 1 of 2

(ii)	Define azeotrope. Explain its significance		3	1
	SECTION - II			
Q-1	Write a short note on the property change of mixing.	[05]	3	2
Q - 2 (a)	Discuss any two methods of consistency test of VLE- data with examples and diagrams.	[05]	1	2
Q-2(b)	Write a short note on ideal solutions and Raoult's law.	[05]	4	2
	OR			
Q-2(a)	Discuss binary liquid-liquid equilibria with diagram.	[05]	1	2
Q-2(b)	Discuss any one consistency test of following for VLE data.	[05]	1	6
	(1) using slope of $\ln \gamma$ curves (2) Redlich-kister method.			
Q-3(a)	Define chemical potential. Discuss the effect of temperature on chemical potential.	[05]	3	2
Q-3 (b)	The following values refer to Wilson parameters for the system acetone (1) – water (2),	[05]	4	5
	$a_{12} = 1225.31$ J/mol, $a_{21} = 6051.01$ J/mol, $V_1 = 74.05 \times 10^{-6}$ m ³ /mol,	,		
	$V_2 = 18.07 \times 10^{-6} \text{ m}^3/\text{mol}, P_1^S = 190.37 \text{ kPa and } P_2^S = 39.87 \text{ kPa}$			
	Calculate equilibrium pressure and composition of vapor in equilibrium with a liquid of composition $x_1=0.43$ at 349 K.			

 $P_1^S = 190.37 \text{ kPa}, \quad P_2^S = 39.87 \text{ kPa}$

The parameters in the Wilson equation [Eq. (8.72)] Λ_{12} and Λ_{21} are calculated using Eq. (8.73). Thus,

$$\Lambda_{12} = \frac{V_2}{V_1} \exp\left[-\frac{a_{12}}{RT}\right] = \frac{18.07}{74.05} \exp\left(-\frac{1225.31}{8.314 \times 349}\right) = 0.1600$$

$$\Lambda_{21} = \frac{V_1}{V_2} \exp\left[-\frac{a_{21}}{RT}\right] = \frac{74.05}{18.07} \exp\left(-\frac{6051.01}{8.314 \times 349}\right) = 0.5092$$

OR

Q - 3 (a) The azeotrope of the ethanol-benzene system has a composition of 44.8% (mol) ethanol with a boiling point of 341.4 K at 101.3 kPa. At this temperature vapor pressure of benzene is 68.9 kPa and the vapor pressure of ethanol is 67.4 kPa. What are the activity coefficients in a solution containing 10% alcohol?

$$\gamma_1 = \frac{P}{P_1^S} = \frac{101.3}{68.9} = 1.4702, \quad \gamma_2 = \frac{P}{P_2^S} = \frac{101.3}{67.4} = 1.5030$$

$$A = \ln \gamma_1 \left(1 + \frac{x_2 \ln \gamma_2}{x_1 \ln \gamma_1} \right)^2 \qquad \qquad \ln \gamma_1 = \frac{A x_2^2}{\left[(A/B) x_1 + x_2 \right]^2}$$

$$B = \ln \gamma_2 \left(1 + \frac{x_1 \ln \gamma_1}{x_2 \ln \gamma_2} \right)^2 \qquad \ln \gamma_2 = \frac{Bx_1^2}{[x_1 + (B/A) x_2]^2}$$

Q - 3 (b) For the cyclohexane (1) – benzene (2) system at 313 K given that at 313 K the [05] 5 vapor pressures are $P_1^S = 24.62$ kPa and $P_2^S = 24.41$ kPa. The liquid phase activity

coefficients are given by $\ln \gamma_1=0.458x_2^2$, and $\ln \gamma_2=0.458x_1^2$ Calculate P and y_1 for $x_1=0.2$ and 0.4.

 $\ln \gamma_1 = 0.458 x_2^2$, $\ln \gamma_2 = 0.458 x_1^2$

Q - 4 State and explain the significance of Lewis-Randall rule.

[05] 3 1

CO : Course Outcome Number

BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	